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Abstract. Within a discriminative framework for human pose estimation, mod-
eling the mapping from feature space to pose space is challenging as we are
required to handle the multimodal conditional distribution in a high-dimensional
space. However, to build the mapping, current techniques usually involve a large
set of training samples in the learning process but are limited in their capability to
deal with multimodality. In this work, we propose a novel online sparse Gaussian
Process (GP) regression model combining both temporal and spatial information.
We exploit the fact that for a given test input, its output is mainly determined
by the training samples potentially residing in its neighbor domain in the input-
output unified space. This leads to a local mixture GP experts system, where the
GP experts are defined in the local neighborhoods with the variational covariance
function adapting to the specific regions. For the nonlinear human motion series,
we integrate the temporal and spatial experts into a seamless system to handle
multimodality. All the local experts are defined online within very small neigh-
borhoods, so learning and inference are extremely efficient. We conduct extensive
experiments on the real HumanEva database to verify the efficacy of the proposed
model, obtaining significant improvement against the previous models.

1 Introduction

Recovering human pose from visual signals is a fundamental yet extremely challenging
problem in computer vision research. A wide spectrum of real-world applications [1]]
in control, human computer interaction, multimedia communication, and surveillance
scenarios motivate the endeavors to find robust and effective solutions to this problem.

Among the large amount of studies on pose estimation, discriminative approaches [2]
have recently seen a revival due to their flexible frameworks adapting to different learn-
ing methods and the ability of fast inference in real-world databases. Discriminative ap-
proaches for human pose estimation [3[4[56/7] aim to model the direct mapping from
visual observations to pose configurations. The methods range from nearest-neighbor
retrieval [8l9] and manifold learning [4]] to regression [10l7] and probabilistic mixture
of predictors [2l5]. However, all of the discriminative approaches have to face the dif-
ficult problem of how to effectively model a multimodal conditional distribution in a
high-dimensional space with small size training data.

Current techniques to deal with multimodality are mainly in the category of mixture
of models. In [2l5], the conditional Bayesian Mixture of Experts (BME) was used to
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represent the multimodal image-to-pose mapping. This model is flexible in modeling
multimodality by introducing the input sensitive gate function. However, this paramet-
ric model is prone to fail if the input dimension is too high. Moreover, the estimation
accuracy of the BME model heavily depends on the distribution of training samples in
ambiguous regions, so it is hard to obtain satisfactory results on small size datasets.

Recently, a few attempts have been made to estimate human pose by using Gaussian
Process (GP) [[11] algorithms, within both discriminative [12l7] and generative [13]]
frameworks. GP regression has proven to be a powerful tool in many applications. In
the discriminative models, pose estimation is mainly built on the basis of GP regres-
sion. The model defines a prior probability distribution over infinite function space.
This leads to a non-linear probabilistic regression framework working along with the
kernelized covariance function. The flexibilities in kernel selection and non-parametric
nature of GP model are advantageous to find efficient solutions of pose estimation on
small size databases [13l7]. However, the full GP regression suffers from two inevitable
limitations: relative expensive computing cost and incapability to handle multimodality.

To tackle the computing limitations, a lot of efforts have been made on the sparse
approximations of full GP [14]11]. These methods use only a subset of training inputs
[15] or a set of inducing variables [16] to approximate the covariance matrix. Although
the computational expenses are reduced by such approximations, the models still work
within the global voting framework and might lack effective mechanisms to avoid the
averaging effect. Another kind of method proposed to handle above two limitations is
mixture of Gaussian process experts [17018/19]]. Similar to mixture of experts architec-
ture [20], in these models the input space is divided into different regions by a gating
network, each of which is dominated by a specific GP expert. In the model, the cu-
bic computing cost on the entire dataset is reduced to that on part of the data. In the
meantime, the covariance functions are localized to adapt to different regions. How-
ever, learning the mixture GP experts is intimately coupled with the gating network.
The determination of gating network is another complex problem.

In this paper, we propose a novel mixtures of local GP experts model, utilizing both
temporal and spatial information. Our method is inspired by the recent work on human
pose inference using sparse GP regression [12]]. In their model, the local experts are
trained offline and the local regressors are defined online for each test point. Derived
from the neighborhood of the test point in the appearance space, each local GP is de-
fined to be consistent in the pose space. Unlike the mixture of GP experts, this model
avoids the tremendous efforts in computing the gating network. We generalize the local-
ization strategy in [12] and design the local GP experts model with three contributions:

(1) We propose to define the local GP experts in the unified input-output space, there-
fore each GP expert is composed of samples that are localized in both input and output
space. This strategy is different from that proposed in [12], where the neighborhood is
defined separately in input and output space. Such scheme prone to fail in dealing with
more-to-one mapping because the neighborhood relationship in output space would be
changed in the input space. In comparison, our model can flexibly handle the two-way
multimodality.

(2) We introduce the temporal local GP experts. In the unified space, we integrate the
temporal and spatial experts into a whole to make prediction and handle multimodality.
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(3) We evaluate the proposed Temporal-Spatial Local (TSL) GP model on the public
real HumanEva database [21]] and achieve significant improvements against both full
GP model and the local sparse GP model.

2 Local Gaussian Process Experts Model

2.1 Gaussian Process Regression

Gaussian process is the generalization of Gaussian distributions defined over infinite in-
dex sets [11]. Suppose we have a training dataset D = {(x;,y;),i = 1,-- -, N}, composed
of inputs x; and noisy outputs y;,. We consider a regression model defined in terms of
the function f(x) so thaty; = f(x;) + €;, where € ~ N(0,87") is a random noise vari-
able and the hyperparameter 3 represents the precision of the noise. From the Gaussian
assumption of prior distribution over functions f(x), the joint distribution of outputs

Y =[y, -, yN]T conditioned on input values X =[xy, -, xy]7, is given by
p(YIX) = fP(Y|f, X)p(f1X)df = N(YI0, K), (D

where f = [fi,---, fv]', f; = f(x;) and the covariance matrix K has elements
Kij = k(x;,x;) + 87'5;;, (2)

where ¢;; is the Kronecker delta function. In this paper, we use a kernel function k
which is the sum of an isotropic exponential covariance function, a noise term and a bias

term, all with hyperparameters, 6. For a new test input X., the conditional distribution,
p(yX,Y,x.) = N(u, o), is a Gaussian distribution with mean and covariance given by

,LL(X*) = k**(KZéY(’ O—(X*) = k*,* - k*,(KZé‘k(,*s (3)

where {’s are the indices of the N training inputs, K, is the covariance matrix with
elements givenby @) fori, j = 1,..., N, the vector ke = ki ¢ is the cross-covariance of
the test input and the N training inputs, and scalar k. . = k(X.,X,)+S"! is the covariance
of the test input.

Note that the mean (B) can be viewed as a weighted voting from N training outputs

N
H(X,) = Z Wn¥n, 4
n=1

where w,, is the n component of k*,(KZiV. With this insight, we can view the GP regres-

sion as a voting process, where each training output has a weighted vote to determine
what the test output should be.

2.2 Local Mixture of GP Experts

To reduce the computing cost and handle multimodality, we need to sparsity the full GP
regression model. Current GP sparse techniques [11/14]] mainly focus on globally spar-
sifying the full training dataset based on some selection criteria such as online learning
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[22], greedy posterior maximization[23], maximum information gain [24]], and match-
ing pursuit [25]. By using this kind of methods, the computational complexity of full
GP , O(N?), are reduced to O(m?) or O(Nm?), where N, m are the sizes of full training
dataset and the selected subset respectively. However, for very large database, the reduc-
tion is not enough. Moreover, these ideas still work within the global voting framework.
That means for every test input, no matter which local distribution mode they belong
to, the selection of the training samples and covariance function are global.

Actually, for a special test input, the training samples in its neighborhood usually
have more impacts on the prediction than those far from it. In voting view, the weights
of the local voters are bigger than others (see (d)). In the GP model, kernel function pro-
vides a metric to measure the similarity between the inputs. Ideally, this metric should
be adjusted dynamically to adapt different local regions.

Motivated by above considerations, we develop the local mixture of GP experts. Like
the model proposed in [12], for a given test input, we select different local GP experts
in its neighborhood. The training samples of each expert are also selected locally. These
local experts build up a local mixture GP experts system to make the prediction. To this
end, in our model, the mean prediction for a given test input X, is given by

T s
H(x.) = Zﬂik*,gK;}ng = Z Zﬂiwzij, (5

T
i=1 i=1 j=1
where T is the number of local experts, S is the size of each expert, ; is the index set
of samples for the i-th expert, 7; is the prediction weight of the i-th expert and y;; is
the j-th training output belonging to the i-th expert, w; is its weight. Both T and S are
parameters of our model. In practice, small values are sufficient for accurate predictions.
Each 7; is set to be a function of the inverse variance of the expert’s prediction.

Different from the localization strategy in [12], our model define the neighborhood
in the input-output unified space U, where the data points are the concatenation of the
input and output vector. The advantages of our strategy are two folds:

(1) The neighborhood relationship is closer to the real distribution in U than in the
single input and output space. For example in pose estimation, two image feature points
which are very close in feature space might be quite different in pose space, and vice
versa. In U, this kind of ambiguity can be avoided to a large extent.

(2) Our strategy can deal with two-way multimodal distributions. For the more-to-
one input to output mapping, the data points would be scattered in the input space just
using the neighborhood definition in the output space. But in U, this situation can be
avoided.

In implementation, the unified data space U is divided into R different local regions
with a clustering algorithm. Each region is dominated by a local GP expert trained
offline. Given a test input, starting from its neighborhood in the input space, we find its
local neighbors in U to build the local mixture of GP experts model. The algorithm is
summarized in Algorithm[I] where, the data set in U is represented as D = [dy, - - - , dy]
with d; = (x;,y;). The function findNN(X, x, ) finds S nearest neighbors of x in X.
The function kmeans(D, R) performs k-means clustering on data set D and returns the
R centers Cg and clusters Dg.
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Algorithm 1. Local mixture of GP experts: learning and inference

1. OFFLINE: Training of the Local Experts
2. R: number of local GP experts
(Cg,Dg) = kmeans(D, R)

3. fori=1...Rdo

4. {6} & min(-1In p(Yg [Xg,, &)
5. end for
6
7
8

. ONLINE: Inference of test point x.,
. T: number of experts, S: size of each expert
. n =findNN(X, x., T)

9. forj=1...T do

10. ¢ =findNN(D.d,,.S)

1. 1= fzndNN(ng,d,,j, 1)

12. 60=6

13, ;= k*_{KZéY(

o= k*,* - k*(Kzzk(*
14. end for
15. p(y.X.Y) ~ 3 N (i, 07)

3 Temporal-Spatial Local GP Experts

In order to handle multimodality more effectively, on the basis of the spatial experts, we
introduce the temporal experts to construct the temporal-spatial combined mixture of
GP experts model. In this model, the spatial local experts learn the relationship between
the input space and output space, the temporal local experts explore the underlying con-
text of the output space. Suppose we work with sequential data. By adding the temporal
constrain, the regression models can be formulated as

Vi = f(X) + &, and y, = g(yi-1) + &1, (6)

where ¢ is the temporal tag, €, ~ N(O,,B;l) and g, ~ N(O,ﬂ;l) are noise processes.
We use the first-order Markov dynamical model to account for the dependence in the
output space. For (6)), considering dynamic mapping on the data set Y = [y, ---,yny]"
in the output space, the joint distribution of Y is given by

N
p0) = pn) [ [ ptvivor omiee ™

=2
where g = [g1,---,gn-11", & = g(y:). In view of the nonlinear dynamical nature of

human motion, we use an RBF plus linear kernel

0
k(yiny,) = 6o exp{—;1 1vi= v I} + 6+ 3Ty, 8)

To build the local temporal experts model, we use similar localization strategy described
in Algorithm [Il Once the local temporal experts give the prediction §, we proceed to
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Algorithm 2. Online inference with temporal-spatial local GP experts

Require: x;, §,;: the output at last time instant
1. COMBINATION of two class of local experts
2. T;: number of spatial experts

T,: number of temporal experts
S': size of each expert

. 7 = findNN(X, x!, T});

cdo= g

. 7 = findNN(D, d,, T);

n= ,](s) U ,](t);

. ONLINE inference

. T =Ty + T,: number of all experts
9. for j=1...T do

10. ¢ =findNN(D,d,;,S)

1. 1= fzndNN(ng, d,. 1)

12. 6=¢

13 u;= k*,gK;l[Y(

7 = ke — ke K ke
14. end for
15. py;1X,Y) = ZL, miN (uir 0F)

© NN LA W

make the prediction supported by the the local spatial experts in the unified space U.
Formally this process is described by p(y|y:-1, x:) = fP(YrWr, X)pGilyi—1)dd:.

In summary, we can build up the temporal-spatial combined local GP model as fol-
lows. Given the training data set X = [x, -, xy]Tand Y = [y, -, yN]T, we firstly
learn a set of hyperparameters {#'} for the local spatial GP experts following the pro-
cess described in the offline part of Algorithm [Il Then, the local temporal models
is also built up by the same way using the training data Y; = [y, -- ,¥n-117 and
Y, = [y2,---,yn]?. At the time instant ¢ — 1, one can get the prediction §, under the
process of local temporal experts model. Then, at the time instant #, we import X; and
¥: into our temporal-spatial combined local experts model to get the final prediction y;.
The algorithm is described in Algorithm[2l

Computational complexity. We compare the computational complexity of our models
with that of full GP in Table[Il Note that for both learning and inference, our models are
linear in N stemming from the operators of finding nearest neighbors (O(RN)) and k-
means clustering (O(RdN)). The complexity of inverting the local GP is not a function
of the number of examples, since the local GP experts are of fixed size. When N > S,

Table 1. Computational complexity: both local models are linear in N for both learning and
inference, where d is the dimension of the data points. In experiments, 7,S,R < N

| [[Full GP|Local Sparse GP Experts|Temporal-Spatial Local GP Experts]
Leaming | ON®) | ORS® + R + DN) OQRS® + 2R + DN)
Inference|| O(N?) O(TS? +TN) O(TS3+TN)
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the computational cost is significantly reduced. Moreover, in general, R is also a small
value comparing to N, therefore the complexity of our model is much smaller than that
of full GP. It’s computational beneficial in dealing with very large size databases.

4 Experiments

4.1 Regression on the Multimodal Functions

In this experiments, full GP, local sparse (LS) GP (Algorithm[)) and Temporal-Spatial
Local (TSL) GP (Algorithm P) are tested on two sets of toy data (see the caption of
Fig. [ for the detailed description of the data set). The regression results are shown in
Fig.[Il We can find that for the multimodal function (first row of Fig.[I)), the full GP
just globally averages the outputs of different modes. The local sparse GP can partly
handle the multimodality and avoid the averaging effect but the outputs frequently skip
between different modes in the multimodal regions (see Fig.[Il (b)). Therefore it’s hard
to get a smooth prediction. This problem can be fixed in the TSL GP model due to the
utilization of temporal information. Notice that in Fig. [I(c), the skips are eliminated
and the prediction is smooth. Another data set provides a unimodal input-to-output
mapping. The regression results are illustrated in Fig.[I(d-f). In this situation, the full GP

Fig. 1. Model comparisons between full GP, Local Sparse GP, and TSL GP on two sets of illus-
trative data.The first data set is consists of about 200 training pairs of (x,y), where y generated
uniformly in (0, 1) and evaluated as x = y + 0.3 sin(27y) + €, with € drawn from a zero mean
Gaussian with standard deviation 0.05. Notice here p(y|x) is multimodal. Test points (N, = 200)
are sampled uniformly from (0, 1). The second data set is obtained by sampling (N = 100) a GP
with covariance matrix obtained from an RBF. About 200 test inputs are sampled uniformly in
(=7.5,7.5). The regression results are shown in: (a,d) Full GP. (b,e) Local Sparse GP. (c,f) TSL
GP. For better viewing, please see enlarged color pdf file.
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Table 2. Average RMS error (in degree) over all joint angles for walking, box, and jog actions of
the three subjects. The performances of four regression models are evaluated.

S1 S2 S3
Walking| Box | Jog ||Walking| Box | Jog |/Walking| Box | Jog
Full GP || 6.4155 [5.9226|6.3579|| 5.6821 |5.0510|3.5510}| 7.0424 |7.2785|2.5060
LS-GP(S) || 6.6130 [5.6815(6.2040|| 5.4859 [4.9035|3.4183|| 6.9563 |7.0344(2.5219
LS-GP(U)|| 6.3567 [5.5951|6.1352|| 5.4498 |4.6334|3.2458|| 6.7356 |6.9226|2.3725
TSL-GP || 5.5846 [5.2913|5.0348|| 4.7816 [4.4119|2.5085|| 6.0349 (6.2152{2.0682

gives perfect results because the global voting mechanism can deal with the unimodal
mapping very well. Here, the local sparse GP also gives good results although there still
exist some jitters. The prediction of TSL GP is smoother than that of the LS GP model.

4.2 Results on the HumanEva Database

We also validate our models on the HumanEva database [21]. The database provides
synchronized video and motion capture streams. It contains multiple subjects perform-
ing a set of predefined actions with repetitions. The database was originally partitioned
into training, validation, and testing sub-sets. We use sequences in the original training
sub-set for training and those in the original validation sub-set for testing. A total of
2,932 frames for walking motion, 2,050 frames for jog motion, and 1,889 frames for
box motion are used. The pose is represented by Euler angles and the dimension of the
pose space (output space) is 26. We use patch-based image feature described by the
SIFT descriptor on the dense interest points with position information. The dimension
of the feature space is 100. All the images we used are captured by the camera C1.

We report the mean RMS absolute difference errors between the true and estimated
joint angles, in degrees. The performance of four models: full GP, LS-GP(U) defined
in the unified space, LS-GP(S) defined in separate space (proposed in [12]), and TSL-
GP are evaluated. In the experiments, we take the values of R, 7T, S as 100, 10, 50, re-
spectively. The results are reported in Table 2] It is obvious that the TSL-GP model
outperforms other models with significant improvements. Other two local GP models
are slightly better than full GP. We also find that in the unified space, the local GP gets
some performance improvement although it is not very distinct. Fig. show the per-
formance comparisons between three models: full GP, LS-GP(U), and TSL-GP with
relative errors (normalized by the range of variations of the joint angles), where the
errors are averaged over all the subjects but specified for the three actions. For most
of joint angles, the TSL-GP model get the best performance. The performance of LS-
GP(U) is better than that of full GP model. In Fig.[d the estimation results and ground
truth of two joint angles over the whole sequence in walking and jog action are plotted.
We compare the results of full GP and TSL-GP. It can be observed that the curves of the
TSL-GP model are more smooth and close to the ground truth than the full GP model
by using the temporal information.
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Fig. 2. Performance comparison of three models for the walking action
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Fig. 3. Performance comparisons of three models for the jog (left) and box (right) actions
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Fig. 4. Curve comparisons of joint angles: ground truth and estimations with TSL-GP and Full
GP regression. (a) Left shoulder (x-axis) of subject S2 in walking action. (b) right hip (x-axis) of
subject S3 in jog action.

5 Conclusions

In this paper, we presented a novel temporal-spatial combined local GP experts model
for efficient estimation of 3D human pose from monocular images. The proposed model
is essentially a kind of mixture of GP experts in which we integrate both spatial and tem-
poral information into a seamless system to handle multimodality. The local experts are
trained in the local neighborhood. Different from previous work, the neighbor relation-
ship is defined in the unified input-output space in this model. Therefore we can flexibly
handle two-way multimodality. Both spatial and temporal local experts are defined on-
line within very small neighborhoods, so learning and inference are extremely efficient.
We conducted the experiments on the real HumanEva database to validate the efficacy
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of the proposed model and achieved accurate results. This model is general purposed
therefore its adaption to other problems is straightforward.
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